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SMALL AREA ESTIMATION USING A MULTINOMIAL LOGIT MIXED
MODEL WITH CATEGORY SPECIFIC RANDOM EFFECTS

Janice Scealy
Australian Bureau of Statistics

and Australian National University

ABSTRACT

This paper describes a model based approach to producing small area estimates of
counts for different categories of the Australian labour force based on a multinomial
logit mixed model with category specific random effects.  By category specific we
mean that within each small area there are two correlated random effects, one
associated with the employed category and the other associated with the unemployed
category.  Estimates of the model parameters are produced using penalized
quasi-likelihood combined with approximated restricted maximum likelihood
estimation and using these, estimated counts are then produced for each small area.
Mean squared error estimates of the estimated counts are approximated using two
methods: 1) a parametric bootstrap and 2) analytical approximations and we compare
the performance of both.  Using a parametric bootstrap we also examine the
properties of the combined penalized quasi-likelihood and restricted maximum
likelihood estimators and discuss model goodness of fit measures and diagnostics.

Keywords: small area estimation, multinomial logit mixed model, parametric
bootstrap, labour force survey.
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1.  INTRODUCTION

The Australian Bureau of Statistics (ABS) produces labour force estimates using direct
survey estimators for regions with large enough sample sizes for these estimators to
be reliable.  In recent years there has been a growing demand for labour force
estimates to be produced in smaller geographical regions.  The direct estimates for
these small regions are considered to be too unreliable because the standard errors
are large due to small sample sizes.  A way around this is to produce model based
estimates which borrow strength from administrative and Census data and other types
of auxiliary variables.  The hope is that the model based estimators will produce
estimates with mean squared error less than the direct survey estimators.

The model based approach relies on an appropriate choice of model and good
auxiliary variables.  The aim here is to produce estimates for each of three labour force
statuses: employment, unemployment and not in the labour force for a set of small
areas.  Auxiliary data are available within age/sex classes for each small area and sample
counts of the three labour force statuses are obtained from the Australian Labour
Force Survey.  The total numbers of people within each sex/age group are also
assumed known and are obtained from the Estimated Resident Population (ERP)
projections published by the ABS (for further details, see ABS, 2007).  Molina et al.
(2007) describe a methodology based on the application of the multinomial logit
mixed model which can be used to produce estimates in this small area estimation
situation.  Random area effects are included in the models to account for potential
correlations between the age/sex class counts in the small areas not explained by the
auxiliary variables.  The inclusion of random area effects in the model specifically
accounts for the area level variation not explained by the auxiliary variables.

In the model described in Molina et al. (2007), only one random area effect is used
within each small area and the random effect is therefore the same across the
multinomial classes.  In our situation this may not be appropriate.  Some work carried
out at the ABS on fitting three separate logistic mixed models to the data suggests that
the variances of the random effects are not the same across each category.  A more
appropriate model would be to introduce category specific random effects.  This
allows for the variances of the random effects to differ between the categories and also
allows for a potential correlation between them as well.  In our case it does not make
sense to assume that the category specific random effects are perfectly correlated.  By
allowing for a general arbitrary covariance matrix, Hartzel et al. (2001) make the point
that the model will be structurally the same regardless of the choice of baseline
category which is a good property.
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In this paper we extend the model in Molina et al. (2007) to include category specific
random effects.  To estimate model parameters, we develop a similar penalized
quasi-likelihood (PQL) estimation scheme with approximate maximum likelihood
(ML) and/or restricted maximum likelihood (REML) for the variance components.
These parameter estimates are then used to produce estimated labour force counts
for each small area.  Mean squared error estimates of the estimated counts are
approximated using two methods:

1. a parametric bootstrap, and

2. analytical approximations,

and we compare the estimates produced using these two methods.  Using a
parametric bootstrap, we also examine the properties of the combined PQL and REML
estimators and discuss model goodness of fit.  Unlike Molina et al. (2007), we also
consider estimation for out-of-sample small areas and briefly review some alternative
estimation schemes.  Note that the primary focus of this paper is to give technical
details on how one might produce model based estimates for the Australian labour
force.  This is an experimental procedure and the ABS will not be publishing any
model based estimates for the Australian labour force as part of the ABS product at
this stage.
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2.  THE MODEL

Similar to Molina et al. (2007) let index  denote the sex/age groups andi (i = 1,2,¢, Id)
 denote the small areas.  We have a slightly different set up because d (d = 1,2,¢,D) Id

is not constant ( ).  The reason why we have unbalanced data is because someId [ 10
of the sex/age groups within a small area have no sample and will be excluded from
model estimation since they do not contribute to the likelihood.  The labour force
sample counts are denoted by ,  and  which represent respectively,ydi1 ydi2 ydi3

employment, unemployment and not in the labour force counts in sex/age group  ini
the -th small area.  Let  denote the sample size and , d mdi = ydi1 + ydi2 + ydi3 pdi1 pdi2

and  denote the respective probabilities of employed, unemployed and not in thepdi3

labour force.  Let  and  denote the category specific random effects.  Weud1 ud2

assume that the vectors  given  and  are(ydi1,ydi2,ydi3)t mdi ud = (ud1,ud2)t

independent across  and  with multinomial distribution, that is with the probabilityd i
density function

(2.1)

It is also assumed that for j = 1,2

(2.2)

where  is a vector of parameters and  is a vector of explanatory variables!j xdij

associated with the -th category.  Note that in (2.1) above, technically we should alsoj
be conditioning on , that is,  should be defined as .  It will bexdij f f(ydi1,ydi2|ud,xdij)
assumed throughout this paper that whenever we condition on  we also conditionud

on  even when it is omitted from the notation.  We also assume that  isxdij ud

independently and identically distributed as bivariate normal and its probability
density function is

where

Under this model we have a vector of variance components  that will" = ("1,"2,"12)t

need to be estimated along with .  This model is a GLMM (generalised! = (!1
t ,!2

t )t

linear mixed model) and to estimate the parameters a variety of different techniques
can be used.  In the next section we discuss some of these.
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3.  ESTIMATION OF β AND ϕ

Let  for  and  and let  be the vectorydi = (ydi1,ydi2)t i = 1,2,¢, Id d = 1,2,¢,D y
obtained by stacking the ’s into a column.  Using the definition of extendedydi

likelihood in Pawitan (2001) we may write the likelihood function for ,  and ! "
 asu = (u1

t ,u2
t ,¢,uD

t )t

(3.1)

Pawitan also notes that this definition of the likelihood is called hierarchical likelihood
by Lee and Nelder (1996).

For the estimation of  and , ideally likelihood based estimation should be based on! "
maximising , whereL(!,")

(3.2)

To estimate  and  one could try to maximise the marginal likelihood defined at (3.2)! "
using, for example, Monte-Carlo methods or numerical integration techniques to
evaluate the integrals.  A procedure like Newton-Raphson could then be used to solve
the likelihood equations since the equations are non-linear.  More specifically,
Hartzel et al. (2001) describe an adaptive Gauss-Hermite, quasi-Newton algorithm
which could be used in the multinomial logit mixed model case.  This method is
appropriate when the dimension of the integrals are small and the dataset size is not
large.  In our case, the dimension of the integrals are small but the dataset size is large.
That is, there are a large number of double integrals to evaluate at each iteration and
convergence will therefore be very slow.

Another method which could be used to maximise (3.2) is to use an automated
Monte Carlo EM algorithm as described in Hartzel et al. (2001).  Again this will be
computationally intensive in our case.  The method consists of implementing an EM
algorithm which treats the random effects  as the missing data.  In the E-step au
conditional expectation needs to be evaluated and this is approximated by using
Monte Carlo methods (actually, an independent sample from the conditional
distribution is generated).  The M-Step is then undertaken by maximising this
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approximate expectation.  At each EM iteration, the Monte Carlo sample size is
increased in an automated way until convergence.  In any case, for computation
reasons we do not pursue exact marginal likelihood maximisation approaches further
here.  Instead we will now discuss approximate methods.

The approach taken in Molina et al. (2007) is to use the PQL (penalized
quasi-likelihood) method introduced by Breslow and Clayton (1993) combined with
either ML (maximum likelihood) or REML (restricted maximum likelihood) for the
variance components.  The PQL method of Breslow and Clayton (1993) obtains
estimates of  given  by maximising an approximation to the marginal likelihood ! "

.  Part of this approximation involves a Laplace integral approximation.L(!,")
Estimates for  are also produced as a by-product of the approximation and hence theu
method produces joint estimates of  and  given .  As Jiang (2007) states, the PQL! u "
method is equivalent to the maximum hierarchical likelihood method of Lee and
Nelder (1996) in the case of normality of the random effects.  The maximum
hierarchical likelihood method obtains joint estimates of  and  by maximising the! u
hierarchical likelihood (the log of (3.1) in our case).  Interestingly in the case of
normal linear mixed models the estimate of  obtained by maximising  and ! L(!,")

 given  are equivalent.  But this is not the case in general for GLMMs.L(!,",u) "

As mentioned by Jiang (2007), Lee and Nelder (1996) showed that in general the
maximum hierarchical likelihood estimates of the fixed effects are asymptotically
equivalent to the marginal maximum likelihood estimates of the fixed effects.  On the
surface this suggests that when the sample sizes are large, then to obtain estimates of 

, maximising (3.2) and (3.1) are equivalent.  However as Jiang (2007) states, the!
asymptotics here are in the sense of the cluster sample sizes approaching infinity, but
the number of clusters remaining bounded.  This is not satisfied in our small area
estimation case since the number of clusters (small areas) is large but the cluster
sample sizes are small and bounded ( , since the sampled units are the age/sex[ 10
classes).  Therefore estimators for  derived from maximising (3.1) will not be!
equivalent to maximising (3.2) even as we increase the number of small areas in the
sample.  As Jiang (2007) also states, there are a number of approximations involved in
deriving the PQL and these approximations have introduced bias into the estimates
and this bias does not vanish asymptotically (PQL estimators are known to be
inconsistent).  When the cluster sample sizes are small there is insufficient information
to estimate both the random and fixed effects  simultaneously.!

Hartzel et al. (2001) points out that PQL methods have been shown to be biased
especially for highly non-normal cases such as Bernoulli response data and biases tend
to increase as the variance components increase.  Hartzel et al. (2001) suspect that a
similar problem will exist for the multinomial logit random effects model when the
multinomial sample sizes are small.  In our case the variance components are
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expected to be small and the average  is approximately 13.  Also note that themdi

number of multinomial observations per cluster is .  In most cases these are[ 10
exactly 10.  Therefore the  and cluster sizes might be sufficiently large togethermdi

and the variance components sufficiently small to allow the PQL estimators to work
reasonably well.  This will of course need to be confirmed via simulation which is
undertaken later.

In any case, two issues have been highlighted so far.  The first is the computational
difficulty of maximising (3.2) directly due to the presence of the integrals which have
no closed form solution and the second is the inconsistency of the PQL estimates
associated with maximising (3.1).  These two issues give some motivation for trying to
come up with alternative estimators.  Jiang (1998) proposes an alternative estimation
method called the method of simulated moments which is both computationally
attractive and results in consistent estimators.  A set of estimating equations are
obtained by equating sample moments of the sufficient statistics to their expectations.
The expectations are then approximated by simulating sequences of normal random
variables (i.e. the integrals in the expectations are approximated by Monte Carlo
simulation).  The equations are then solved by a Newton-Raphson procedure.
However, there is one issue associated with this method.  Jiang (1998) shows that the
method of simulated moment estimators can be quite inefficient.  For small samples
the method of simulated moment estimators seem to have substantially larger
variance than estimators based on PQL.  So it appears there is a bias versus variance
trade-off when choosing between such methods as PQL or the method of simulated
moments.  There are clearly issues associated with all estimators that have been
discussed so far.
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4.  PQL ESTIMATION OF β AND u

To obtain the PQL estimates of  and  we need to maximise the log of the joint! u
likelihood defined at (3.1).  Assume for the moment that the variance components "
are known.  The joint log likelihood is

(4.1)

where  is a constant.  The maximum likelihood estimators can be obtained byc
equating the first derivatives of (4.1) to zero and then solving this system of equations.
Let  index the components of the vectors  and  and denote the -thq = 1,2,¢,Qj !j xdij q
component of each by  and  respectively.  By noting that!j(q) xdij(q)

and

after some algebra it can be shown that for ; ; ; j = 1,2,3 j∏ = 1,2 q = 1,2,¢,Qj∏

 and ,i = 1,2,¢, Id d = 1,2,¢,D

and for  and ,j∏ = 1,2 q = 1,2,¢,Qj∏

(4.2)

Now we need to find the first derivatives with respect to the random effects.  Again
after some algebra it can be shown that for  ;  ;  ; j = 1,2,3 j∏ = 1,2 i = 1,2,¢, Id

 and ,d = 1,2,¢,D d∏ = 1,2,¢,D
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and for  and ,j∏ = 1,2 d∏ = 1,2,¢,D

Now we note that for ,d = 1,2,¢,D

and

Therefore for  and ,d∏ = 1,2,¢,D j∏ = 1,2

and hence for  and ,d∏ = 1,2,¢,D j∏ = 1,2

(4.3)

Estimates for  and  are found by equating all the derivatives defined by (4.2) and! u
(4.3) to 0 and solving the resulting system of equations.  Because these equations are
non-linear they cannot be solved directly.  Instead they can be solved by using a
Newton-Raphson algorithm.  In order to use the Newton-Raphson method we will also
need to work out all the second derivatives of the loglikelihood function.

For  ;  ;  and  it can be shown thatj∏ = 1,2 j∏∏ = 1,2 q = 1,2,¢,Qj∏ q∏ = 1,2,¢,Qj∏∏
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Also for  ;  ;  and ,d∏ = 1,2,¢,D d∏∏ = 1,2,¢,D j∏ = 1,2 j∏∏ = 1,2

and for  ;  ;  and ,d∏∏ = 1,2,¢,D j∏∏ = 1,2 j∏ = 1,2 q = 1,2,¢,Qj∏

Similar to Molina et al. (2007), let , where for  ,#di = (#di1,#di2)t j = 1,2

We can also write (2.2) as

where

and  denotes a matrix of zeros with dimension .0a&%b& a& %b&
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dij
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p

p

= ,di di di+X Z uθ β

2

1

1 1

1 2

= ,
t
di Q

di t
Q di

×
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x
X

x

0

0

1 2( 1) 1 2( )

1 2( 1) 1 2( )

1 0
=
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d D d

di
d D d

× − × −

× − × −

 
 
 
 

0 0

0 0
Z



Denote the mean and covariance matrix of  given  as  and  and these areydi u $di %di

and

Again similar to Molina et al. (2007), let  and  be the vectors of first derivatives ofS! Su

the loglikelihood.  That is,

and

In matrix notation we have

and

and the non-linear system of equations that we need to solve is described by

(4.4)

Let

be a square symmetric matrix containing all the derivatives of  with respect to ,J! S! !

be a square symmetric matrix containing all the derivatives of  with respect to ,Ju Su u

be the matrix containing all the derivatives of  with respect to .J!u Su !
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1 2= ( , )t
di di di dim p pµ

1 1 1 2

1 2 2 2
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= .

(1 )

di di di di
di di

di di di di

p p p p
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p p p p

− − 
 
 − − 

Σ

β β β β β β β

 ∂ ∂ ∂ ∂ ∂ ∂
  ∂ ∂ ∂ ∂ ∂ ∂ 1 21(1) 1(2) 1( ) 2(1) 2(2) 2( )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
= , ,..., , , ,...,

t

Q Q

l l l l l lu u u u u u
S

β β β β β β

 ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 11 12 21 22 1 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
= , , , ,..., , .

t

u
D D

l l l l l l
u u u u u u

u u u u u u
S

β β β β β β

( )β
= =

−∑∑
1 1

=
dID

t
di di di

d i

S X y µ

( ) −

= = =
− −∑∑ ∑ 1

1 1
1 1 1

=
dID D

t t
u di di di d d d

d i d

S Z y Z W Z uµ

( )β + + ×1 2( 2 ) 1= , = .
tt t

u Q Q DS S S 0



It can be shown that

and

The Newton Raphson algorithm can now be applied to find the solution to (4.4).  This
iterative algorithm has updating equations as follows

(4.5)

where the superscript  indicates the iteration number and the current values of allk
parameters are used to evaluate the functions within.  Note that in its current form
(4.5) contains a large matrix which needs to be inverted at each step.  This term can
be further simplified by noting the following partitioned matrix identity given in
Henderson and Searle (1981)

(4.6)

for any square matrices  and  with  nonsingular and  possibly singular.  MolinaJ! Ju Ju J!
et al. (2007) also make use of this identity.  Note that this identity simplifies the
inversion quite a lot since we no longer need to invert a square matrix of dimension 

.  Instead we need to invert  and .  The matrix Q1 +Q2 + 2D J! − J!u Ju
−1 J!u

t Ju

 is a square matrix of dimension  which is the total number ofJ! − J!u Ju
−1 J!u

t Q1 +Q2

explanatory variables in the model and is a lot smaller than  since  isQ1 +Q2 + 2D D
large.  As for , this is a a square matrix with dimension  which is still quite large.Ju 2D
But note that  is a block diagonal matrix with block sizes of 2.  So all as we need toJu

do in this case is invert a series of 2 by 2 matrices which is trivial.

12 ABS • SMALL AREA ESTIMATION USING A MULTINOMIAL LOGIT MIXED MODEL • 1351.0.55.029

β
= =

−∑∑
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β β
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     −

     
     

1
1

1
= ,

( )

k kk k
u k

k t kk k
u u

J J
S

J Ju u

β β

( ) ( )
( ) ( )

1

1 11 1 1

1 11 1 1 1 1 1

=

,

u

t
u u

t t
u u u u u u u u

t t t t
u u u u u u u u u u u u u

β β

β

β β β β β β β

β β β β β β β β β

−

− −− − −

− −− − − − − −

 
 
 
 
 − − − 
 
 − − + − 

J J

J J

J J J J J J J J J J

J J J J J J J J J J J J J J J



So to compute PQL estimates of  and  we use the iterative formula (4.5) until! u
convergence (and using the identity given at (4.6)).  An initial guess is needed for the
parameters to start off the iterations.  We suggest using a small value of  as its initialu
value and an initial value of  obtained by fitting a multinomial logit model without!
random effects.

The criterion for convergence we use is one given in Booth and Hobert (1999)

(4.7)

where  and  are both small positive numbers (we use  and ).&1 &2 &1 = 0.01 &2 = 0.001

In all of the above it was assumed that  is known.  In the next section we derive an"
approximate maximum likelihood estimator of  given the other terms.  To obtain"
joint estimates of ,  and  we will need to iterate between updating each, where ! u " !
and  will be updated using the algorithm in this section.u
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1
( ) ( )

( ) 1

2

1

1

, =1,2 and =1,2,..., ,

max < ,

, =1,2,...,  and =1,2

k k
j q j q

jk
j q

k k
dj dj

k
dj

j q Q

u u
d D j

u

β β

β ε

ε

ε

+

+

 −
 
 + 
 
 
 −
 
 + 



5.  APPROXIMATE ML ESTIMATION OF ϕ

It was mentioned in Section 3 that for the normal linear mixed model, given the
variance components, estimates of  obtained by maximising  are equivalent! L(!,",u)
to maximising .  However for the normal linear mixed model, given , MLL(!,") !
estimates for the variance components based on maximising  and  areL(!,",u) L(!,")
not equivalent.  This suggests that it is probably inappropriate to maximise  toL(!,",u)
get estimates of  in our situation too."

To obtain an approximate marginal likelihood , Molina et al. (2007) adapted theL(!,")
ideas of Schall (1991) to their bivariate setting.  We will follow this approach too.

Assume that  and  are known.! u

Let for j = 1,2.

A first order Taylor series expansion about the point  leads to$di

for j = 1,2.

Let  and .'di = (g1(ydi) , g2(ydi) )t edi = %di
−1 (ydi −$di )

Calculating the expressions of the derivatives involved and using matrix notation, the
above Taylor series expansion becomes

where  and .Var(edi|ud) = %di
−1 E(edi|ud) = 02%2

It is also clear that  and .E('di|ud) = Xdi !+Zdi u Var('di|ud) = %di
−1

Although it is not clear in Molina et al. (2007), on correspondence with the author the
following was established.  The term  is assumed to be approximately normal.'di|ud

Since  is normal, this also implies that the joint distribution of  and  isud 'di ud

approximately normal and hence the marginal distribution of  is approximately'di

normal.

Let .  Now it is easily shown that  andW = diag(Wd,d = 1,2,¢,D) E('di) = Xdi !

The matrix  is a function of the random effects and we now need to assume that%di

this is approximately constant and hence , where the randomVar('di) l %di
−1 +ZdiW Zdi

t

effects are replaced by their estimated values.
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=
− −1 2 3

( )= log logdij dij
j di

di di di di

y y
g

m y y y
y

( ) ( )1 1 2 2
1 2

( )= ( ) ,

di di

j j
j di j di di di di di

di di

g g
g g y y

y y
µ µ

∂ ∂
+ − + −
∂ ∂

y
µ µ

µ

= ,di di di di+ +X Z u eξ β

( ) ( )( ) ( )( ) ( )1 .t
di di d di d di di diVar E Var Var E E −= + = +ξ ξ ξu u Z WZΣ



Let  denote the vector that is constructed by stacking the vectors  in one column' 'di

and .V = Var(')

Then , where V = Z W Zt +%−1 % = diag(%di, i = 1,2,¢, Id,d = 1,2,¢,D).

Now we can define the approximated normal log likelihood for  as (ignoring"
constant terms and assuming  is known)!

where  is obtained by stacking the matrices .  Also let  be the matrix obtained byX Xdi Z
stacking .  Given , we can now obtain approximate ML estimates of  byZdi ! "
maximising  with respect to .  However, before we do this we need to simplify l(") " l(").

To compute the PQL estimates of  and , we use the updating equations (4.5).  As! u
noted by Jiang (2007), the following alternative iterative procedure originally
proposed by Breslow and Clayton (1993) can also be used to produce the same PQL
estimates.  That is, for fixed  compute"

(5.1)

and (5.2)

where given  one may first use (5.1) to update , then use (5.2) to update  then' ! u
update  and so on until convergence.  Note that we do not use (5.1) and (5.2) to'
update  and  because (4.5) is computationally more convenient.  However the form! u
of (5.1) and (5.2) is useful here because we can use these to help simplify l(").

From (5.2), (5.1) and the results on page 446 in Pawitan (2001),

and

We can now write an approximated pseudo loglikelihood of  as (ignoring terms that"
are not functions of )"

(5.3)
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( ) ( )−− − − −11 1
( )= log ,

2 2
tl V X V Xϕ ξ β ξ β

( ) 11 1ˆ = t t−− −X V X X Vβ ξ

( )1 ˆˆ = ,t − −u W Z V Xξ β

( ) ( ) ( ) ( )− −− − − − − − +1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ=
t t tX V X X Zu X Zu u W uξ β ξ β ξ β ξ βΣ

1= .t −+V W Z Z W−1Σ Σ

1 11 1 1
ˆ ˆ( )= log log .

2 2 2
t tl − −− − + −W Z Z W u W uϕ Σ



Given current estimates of  and , to obtain approximate ML estimates of  we need! u "
to differentiate (5.3) with respect to , set the resulting three equations to 0 and solve"
them.

In the derivation of  it was assumed that  was constant and does not depend on l(") % u
or   When this is the case, joint estimation of ,  and  is equivalent to maximising!. ! " u
the function

(5.4)

since

This justifies the following algorithm to obtain joint estimates of ,  and ! " u

1. Compute  and  given  by using (4.5).! u "

2. Fixing  and  at their current values  and , update  by maximising (5.3).! u ! u "

3. Iterate between 1 and 2 until convergence.

However this algorithm assumes that  is constant in (5.3).  Pawitan (2001) notes that%
this algorithm is appropriate when is a slowly varying function of  (  is the vector%−1 $ $
obtained by stacking all the ).  This means we can ignore the derivative of the$di

second term of  with respect to  and , so the first step is justified.Q ! u

Pawitan (2001) notes that for certain generalised linear mixed models studied by
Breslow and Clayton (1993), estimates of the variance components based on
maximising (5.4) are close to the exact marginal likelihood estimates provided that the
variance component is not too large.  The method tends to underestimate the
variance component, and the problem can be severe for large values of the variance
component.  However in our application, the variance components are expected to be
small, so hopefully this should not be too much of an issue.

We now need to maximise (5.3) and to do this we need to differentiate this function
with respect to each component of .  For " a = 1,2 and 12,

(5.5)

where  denotes matrix trace.Tr[ ]
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11
( , , )= ( , , ) log

2
tQ l −− +u u Z Z Wβ ϕ β ϕ Σ

( , , ) ( , , ) ( )
= , =  and = .

Q l Q l Q l∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

u u
u u

β ϕ β ϕ ϕ
β β ϕ ϕ

( )
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

− −

− −−− −

∂ +∂∂ ∂
= − − −

∂ ∂ ∂ ∂

  ∂ ∂ ∂
= − − + −  ∂ ∂ ∂    

1 1

1 111 1

loglog( ) 1 1 1
2 2 2

1 1 1
,

2 2 2

t t

a a a a

t t

a a a

l

Tr Tr

Z Z WW u W u

W W W
W Z Z W u u

ϕ Σ

Σ



After some algebra, it can be shown that

(5.6)

(5.7)

and (5.8)

Also, (5.9)

(5.10)

and (5.11)

Now for  letd = 1,2,¢,D

After some algebra it can be shown that

(5.12)
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(5.13)

and

(5.14)

By substituting the relevant terms (5.6)–(5.14) into (5.5), we can now calculate the
first derivatives of  with respect to .l(") "1,"2 and "12

Let

To obtain an update for  given  and  we need to solve .  The multinomial" ! u S" = 03%1

model described in the paper Molina et al. (2007) has one variance component.  In
this case, an explicit updating formula is available for the variance component based
on rearranging the single equation

An experiment was undertaken to determine whether simple updating equations
could be obtained by rearranging the equations  but we could not get it toS" = 03%1

converge.  Unfortunately we will need to use a single iteration of the Newton-Raphson
algorithm to update  instead, which means we will also need all the second"
derivatives of .l(")
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After some algebra it can be shown that
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Now let

To obtain an update of  given  and  we simply compute" ! u

where all terms on the right hand side are evaluated using the current values.  Only
one update is needed because after  is updated once we then have to go back to"
updating  and  by using repeats of (4.5) until convergence given the current value! u
of ."

The iterative algorithm for computing joint estimates of ,  and  stops when both! u "
(4.7) and the following condition is satisfied for all three variance components

where subscript  denotes the particular component.a
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6.  APPROXIMATE REML ESTIMATION OF ϕ

Approximate REML (Restricted Maximum Likelihood) estimation could also be used as
an alternative to approximate ML estimation for estimating .  This approach was also"
undertaken by Molina et al. (2007).

For normal linear mixed models, it is well known that in some cases the ML estimator
of the variance components can be downwardly biased (see page 235 of Rao and
Kleffe (1988)).  As mentioned in Harville (1977), one criticism of the ML approach to
estimating variance components is that the ML estimator takes no account of the loss
of degrees of freedom for estimating the fixed effects .  For estimating the variance!
components,  can be considered as a nuisance parameter.  A way of eliminating the!
influence of  is to construct a marginal (or approximated marginal) ML estimator for!
the variance components.  In the normal linear mixed model case, this involves
transforming the original observations such that the new data are independent of !
and then maximising the likelihood for the variance components of this new data.
The transformed data are called error contrasts as described in Harville (1977) and
have smaller dimension than the original data.

In the normal linear mixed model case, the REML loglikelihood can be derived as a
modified profile likelihood (see pages 286–292 in Pawitan (2001)).  In our case the
approximated REML loglikelihood is proportional to

(6.1)

where  is given by (5.3) and as Pawitan (2001) mentions, the second term can bel(")
interpreted as a penalty term, subtracting from the profile loglikelihood the
‘undeserved’ information on the nuisance parameter (which is ).  To obtain!
approximate REML estimates of  in our case, we simply need to maximise (6.1) which"
can be done using similar methods to what is described in Section 5.  That is, we need
to implement the same Newton-Raphson algorithm except that now  and  containS" J"
extra terms.  These extra terms can be obtained by finding all the first and second
derivatives of the second term in (6.1) with respect to all the variance components.

Although we are potentially reducing bias by using the approximated REML estimator
we should keep in mind that the variance may be larger than the variance of the
approximated ML estimator.  Therefore in some situations the MSE of the
approximated ML estimator might be smaller.  See Harville (1977) for further details
for a discussion in relation to normal linear mixed models.

In any case we need all the first and second derivatives of .log|XtV−1X|
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For ,a = 1,2 and 12

Now

and therefore

(6.2)

where

depending on which value of  is chosen.a

On first glimpse (6.2) looks quite difficult to calculate, but note that the matrix within
the trace is only a  dimensional matrix in total.  Because  and  are blockQ1 +Q2 V W
diagonal (  has  blocks each of size ) simplifications can also be madeV d = 1,2,¢,D 2Id

within the matrix multiplications in the calculations.

Now we need to calculate the second derivatives.  For  and ,a = 1,2,12 b = 1,2,12
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Now let

and

where  and  are as defined in Section 5.S" J"

To obtain a REML update of  given  and  we compute" ! u

where all terms on the right hand side are evaluated using the current values.
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7.  EMPIRICAL BEST PREDICTION, SMALL AREA ESTIMATION
AND A NOTE ON MSE ESTIMATION

Now that we have derived the PQL and REML estimators of the model parameters, we
would like to use these to help predict the small area totals of employed, unemployed
and not in the labour force.  These sets of totals are, for  and ,j = 1,2,3 d = 1,2,¢,D

where  denotes the total non sample in small area , age/sex group  and labourydij
r d i

force class .  Note that  (total number of age/sex classes within a small area).  Inj I = 10
previous sections, summations were defined using  and classes  wereId Id + 1,¢, I
excluded because they did not contribute to the likelihood functions since there was
no sample in these classes.  However, we now need to include these.

Obviously we cannot use  directly because all the  are unknown.  If we knew the(dj ydij
r

values of  and  then we could estimate  using! u (dj

where

and  is the total non-sample in sex/age group , in small area  and these aremdi
r i d

assumed known.  Again  cannot be used here directly since  and  are unknown.(dj ! u

The prediction problem we now have is one where we need to predict

for  (  is not needed since it can be obtained via subtraction since  isj = 1,2 j = 3 mdi
r

known).  There are two ways to predict .  The first is to simply replace  with the)dj u

PQL estimate  and replace  with the PQL estimate .u ! !
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That is, (7.1)

where the hat on  means that we are using estimates of  and  within this$dij
r ! u

function.  This is the approach taken by Molina et al. (2007).  An alternative way of
predicting  is to use an empirical best predictor (EBP) as defined by Jiang (2007, pp.)dj

143–144).  Assuming that  and  are known, the best predictor in the sense of! "
minimum MSE of  would be)dj

An empirical best predictor replaces  and  in the integral above with respectively the! "

PQL and REML estimates  and .  The double integral above has no closed form! "
solution but we could approximate it using Monte Carlo methods.

Because we need to approximate the double integrals in EBP using Monte Carlo
methods, this adds to the computation time and MSE estimation becomes a problem.
For instance, bootstrap MSEs (and those based on other resampling methods) are not
computationally feasible for EBP.  Alternatively Jiang (2007) on page 144 describes a
method of approximating the MSEs of EBP based on a Taylor Series expansion that
gives an estimate whose bias is corrected to the second order.  However in the
derivation it is assumed that the estimates of  and  have certain properties which! "
PQL estimators may not satisfy (see page 158).  Therefore these MSE estimates may
not be correct to second order in our context.  Another problem with this MSE
estimator is that one of its terms relates to the expected value of the EBP squared over
the distribution of  and this calculation is not computationally feasible for our model.y

One advantage of using the estimator at (7.1) is that MSE estimation is relatively
straight forward.  Bootstrap MSEs are computationally feasible or alternatively,
estimators based on Taylor series approximations can be used.  In particular the
Taylor series approximation method in Molina et al. (2007) could be extended to our
category specific multinomial mixed model case.  In any case it is not even clear
whether the MSEs will be smaller for the EBP than those for (7.1).  Therefore at this
stage EBP is not recommended.
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8.  ANALYTICAL APPROXIMATION OF THE MSE

For reasons discussed in the previous section we will be using the PQL estimators of !
and  along with (7.1) to predict the small area totals.  To approximate the MSEs ofu
these small area total estimates, we use a similar approach to the one described in
Molina et al. (2007) based on an analytical approximation.  We begin by briefly
outlining this approach and then later in this section we describe the technical details
of the MSE approximation.

As mentioned in Molina et al. (2007), under linear mixed models, Prasad and Rao

(1990) obtained an analytical approximation of the MSE of an estimator of the type 

 where  and  are vectors of constants and  and  are respectivelyt(v) = *t! +mtu * m v v
the vector of variance components and the estimated vector of variance components.

The Prasad and Rao (1990) approximation takes the form

and the estimator is given by

which corrects for the bias in the  term.  In the derivation, Prasad and Rao used aG1(v)
result from Kackar and Harville (1984) who showed that under certain conditions

In the Prasad and Rao context

and Prasad and Rao (1990) proposed a new approximation to  relevant in a smallG3(v)
area estimation context.

Prasad and Rao’s formula was adapted by Baillo and Molina (2005) to a multivariate
mixed linear model and a multidimensional parameter.  Both the Prasad and Rao
(1990) and the Baillo and Molina (2005) MSE estimators are for linear mixed models.
These estimators can be adapted to our context by noting that our model can be
written as an approximate bivariate linear mixed model (see Section 5 for further
details).  In our context we use the predictions (7.1) for the non-sample labour force
counts and in order to apply the Prasad and Rao (1990) and Baillo and Molina (2005)
MSE approximations, we need to linearise (7.1) using a first order Taylor series
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approximation (Molina et al. (2007) use a similar approach).  This then results in a
MSE approximation of the form .  There is also an additionalG1(") +G2(") +G3(")
term needed called  which is added to the above MSE approximation.  This extraG4(")
term comes from the fact that we are estimating the actual non-sample counts %i ydijr

and not simply which introduces additional variability (this extra term is also found)dj
r

in the MSE approximation in Molina et al. (2007)).

Note that the multivariate linear mixed model in Baillo and Molina (2005) is different
from our approximate multivariate linear mixed model.  In Baillo and Molina (2005)
there is only one random effect associated with each small area and we have two
correlated random effects in each small area.  Therefore the formulas in Baillo and
Molina (2005) cannot be immediately applied to our case.  Nonetheless we are still
able to produce a MSE estimator but note that it cannot be guaranteed to be accurate
to a known order even if the multivariate linear mixed model was not an
approximation (a more detailed and rigorous proof along similar lines to pages 7–17
in Baillo and Molina (2005) would be needed for that).  In any case, we show in later
sections that our MSE estimator performs well.  We now derive this MSE estimator.

For , let  be the vector of small area totals that we ared = 1,2,¢,D (d = ((d1,(d2)t

interested in predicting (note that the third total within each small area can be
obtained via subtraction).  Now

where  and  are respectively the vectors of sample totals (known) andydi ydi
r

non-sample totals (unknown) and

(8.1)

where  is the total non-sample which is assumed known.mdi
r

Now define

and (8.2)

where  is (8.1) with the ’s and ’s in  and  replaced with the PQL$di
r u ! pdi1 pdi2

estimates  and .u !
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The estimator  is used to estimate .  We will define the MSE matrix of  as(d (d (d

(8.3)

The MSE matrix contains  and the cross product term( ) ( )1 2
ˆ ˆ and d dMSE MSEδ δ

Note that the terms

and

are omitted from (8.3) because these are matrices containing all zeros.  This is

because given ,  and  are independent.ud (d − (d (d − (d

Hence

and note that

By a similar argument,

Now
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and

(8.4)

where

The term  cannot be further simplified because  is a non-linear functionE %i=1
I %di

r %di
r

of the random effects and the expectation involves an integral with no closed form

solution.  To estimate this term we can use (as in Molina et al. (2007))

where  is  with the ’s and ’s within replaced by the PQL estimates  and .%di
r
%di

r u ! u !

Now we need to further simplify and approximate the matrix .MSE()d)

By definition,

and each of the  can be written as functions of$di
r

where

We can now calculate a first order Taylor series approximation for each of the vectors 

 about the point .  This approximation is$di
r #di
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and hence

where

and

where

and

Technically  and  are random variables since  is dependent on .  However,Kd Md %di ud

from this point forward we need to assume that  and  are constant and do notKd Md

depend on .  Note that this will be a reasonable assumption if the varianceud

components are small.  Now, using the fact that , it follows that)d − )d l )d
∏ − )d

∏

 (Molina et al. (2007) also make this assumption) and thereforeMSE()d) lMSE()d∏ )

(8.5)

where

and  and  are the estimates of  and  assuming that the variance components , ! u ! u "1

 and  are known."2 "12
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As noted in Section 5, the PQL estimators can be obtained via equations (5.1) and

(5.2).  So we can write

(8.6)

and (8.7)

where  and .  Note that  is  but with ,  and V = Z W Zt +%−1 V = Z W Zt +%
−1

W W "1 "2 "12

within replaced with either the approximated ML or REML estimates.  Also,  is just %
−1

 but with  and  within replaced with the PQL estimates (which are also%−1 ! u
technically functions of ,  and )."1 "2 "12

Baillo and Molina (2005) apply a result which was derived by Kackar and Harville
(1984) in a linear mixed model setting.  We will also apply this result and assume that
the estimator of the variance components is translation invariant.  This assumption
means that we can further simplify (8.5) to

(8.8)

To approximate the first term in (8.8) we note that  and , where )d
∏ = )d

∏ (") )d
∏ = )d

∏ (")

.  This only works if we assume that  is not a function of " = ("1,"2,"12)t %di "

(technically  is a function of  and  which are themselves functions of ).  With%di u ! "

these assumptions we can now approximate  using a first order Taylor series)d
∏ − )d

∏

expansion like in Kackar and Harville (1984).  Here though we are in a bivariate

setting.

First let , then)d
∏ = ()d1

∏ ,)d2
∏ )t
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This then implies that

where for  and ,j = 1,2 k = 1,2

Now let for ,j = 1,2

then for  and ,j = 1,2 k = 1,2

Now assuming that the elements of each of , for each combination
t

dj dkτ τ′∂  ′∂ 
  ∂ ∂  

! !
ϕ ϕ

of  and , are approximately independent of the elements of , thenj k ("−")("−")t

(8.9)

where for  and ,j = 1,2 k = 1,2
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This idea is motivated from Kackar and Harville (1984) and is also applied in Prasad
and Rao (1990) and Baillo and Molina (2005).

The term

can be approximated by using the inverse of the approximated observed Fisher
information matrix.  That is, if approximated ML is being used for the variance
components then we can use the final value of  from Section 5.  Or if−J"−1

approximated REML is being used for the variance components then we can use the
final value of  from Section 6.−J"−1

As for the other terms

for  and , these can be simplified further by applying some ideas fromj = 1,2 k = 1,2
Prasad and Rao (1990) and Baillo and Molina (2005) with some adjustments.  We do
this now.

Note that  can be written as follows)d
∏

where  and  are respectively the first and second rows of the matrix .Kd1 Kd2 Kd

Similarly,  and  are respectively the first and second rows of the matrix .Md1 Md2 Md

For  we havej = 1,2

Now substitute  into the above equation and after some algebra and' = X!+Z u + e
some simplifications we obtain
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Now for  and  we havea = 1,2 and 12 j = 1,2

(8.10)

The justification for the above approximation can be roughly explained as follows.

The terms that we are ignoring contain the term .  This term is expected to(XtV−1X)−1

be small and negligible if the number of small areas  is large (which is often the caseD
in practise) compared to the number of parameters in .  This is because  is! (XtV−1X)−1

the approximate variance of  which gets smaller as the sample size increases.!

Using the approximation (8.10) we can now write for  and ,j = 1,2 k = 1,2

(8.11)

where

To approximate each of the matrices given by (8.11) for  and , we simplyj = 1,2 k = 1,2
calculate the derivatives and then replace the unknown parameters by their estimated
values.  To calculate the elements within the matrices we can use the following
simplifications which we obtained after some algebra.
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For  and  and  and j = 1,2 k = 1,2 a = 1,2,12 b = 1,2,12

(8.12)

So we can now fully approximate ( )( )( )ˆ ˆ .t
d d d dE ′ ′ ′ ′− −! !τ τ τ τ

Next we need to approximate the matrix .  To do this we follow almostMSE()d
∏ )

directly the approach taken in Molina et al. (2007) and after some algebra we obtain

terms very similar to those obtained in that paper.

By definition

(8.13)

Let

and

and substitute (8.6) and (8.7) and  into (8.13).  We then obtain' = X!+Z u + e

and hence

(8.14)
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Now

and so after the above substitutions and with some further simplifications we have

(8.15)

Now let (8.16)

and we will need the following identity from Henderson and Searle (1981) (for
example)

(8.17)

After some algebra it can be proved that

(8.18)

and (8.19)

Using (8.16)–(8.19) we can further simplify (8.15) to

which on collecting terms is

To approximate the above equation we simply substitute in the estimates of ,  and ! u ".
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We now have a formula to approximate the matrices .  This approximation isMSE((d)

(8.20)

where

and  is given by (8.9) with estimates substituted in and with some furtherG3(")
simplifications such as (8.12).  Note that  is multiplied by two in the aboveG3(")
approximation.  This is because as in Molina et al. (2007), E(G1(")) lG1(") −G3(")
and we therefore multiply  by two to correct for the bias.  The proof that G3(")

 is given in the Appendix.( )( ) ( ) ( )1 1 3ˆE ≈ −G G Gϕ ϕ ϕ
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9.  OUT-OF-SAMPLE SMALL AREAS

All previous sections implicitly assumed that for , each small area hadd = 1,2,¢,D
some sample in at least one of its age/sex classes.  Now suppose that as before we
have  in-sample small areas, but we now have an additional set of  smalld = 1,2,¢,D R
areas with no sample.  We can still produce estimates and MSEs for these
out-of-sample small areas, but a slightly different methodology needs to be applied.

In total we have  small areas that we wish to produced = 1,2,¢,D,D+ 1,¢,D+R
estimates and MSEs for.  For the  small areas in sample we simply followd = 1,2,¢,D
the methodology in the previous sections (discard the out-of-sample small areas for
estimation of parameters, small area totals and MSEs).  The rest of this section
discusses estimation for the out-of-sample small areas.

Given our model, the best prediction we have of the out-of-sample small area random
effects  for  is .  This is because in our model(ud1,ud2)t d =D+ 1,D+ 2,¢,D+R (0,0)t

we are assuming that the random effects are independent between small areas and
knowing what the observed in-sample data are does not give us any additional
information about the out-of-sample ’s.  If we had a model with spatially correlatedu
random effects, then we could adapt the method outlined in Saei and Chambers
(2005) to produce estimates and MSEs.  But of course, our model does not have
spatially correlated random effects.

We therefore need to resort to producing synthetic estimates for the out-of-sample
small areas.  These are for ,d =D+ 1,D+ 2,¢,D+R

where

where the estimates  are the PQL estimates based on the in-sample data ! = (! 1
t ,! 2

t )t

d = 1,2,¢,D.

Most of the derivation for an approximation to the MSE matrices for the out-of-sample
small area totals proceeds in a similar way as in the previous section.

38 ABS • SMALL AREA ESTIMATION USING A MULTINOMIAL LOGIT MIXED MODEL • 1351.0.55.029

*

1

ˆ ˆ ˆ= = ,
I

r
d di d

i=
∑δ µ τ

1 1

1 1 2 2

2 2

1 1 2 2

ˆ

ˆ ˆ
1*

ˆ
2

ˆ ˆ

1
ˆ = = ,

1

t
di

t t
di di

t
di

t t
di di

syn
dir r r

di di di syn
di

e

pe e
m m

pe

e e

 
 

  + +   
     

 
+ + 

x

x x

x

x x

β

β β

β

β β

µ



First define

and let

denote the real totals we are trying to estimate.

Now define

The MSE matrix of  for  can now be written as(d d =D+ 1,D+ 2,¢,D+R

(9.1)

We now go about further simplifying the terms in (9.1).

Firstly we note that

and therefore

(9.2)
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The first term in the above equation is simply (8.4) and to approximate this term we
can use (assuming the variance components are small)

where (9.3)

The second term in (9.2) can be approximated by taking a first order Taylor series
expansion.  Let  and .  Then# = Xdi!+ud #& = Xdi!

(9.4)

where  has the same form as (9.3) but with  and  replaced respectively with%di
&r pdi1

syn pdi2
syn

 and .  Hence,pdi1
& pdi2

&

(9.5)

where

Note that (9.5) can be approximated with ,* *ˆ ˆ ˆ t
d d dM W M

where

and

Now we need to approximate
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Let  and .  By a first order Taylor series expansion we have# di
& = Xdi! #di

& = Xdi!

(9.6)

and hence

(9.7)

Now let  and , where .  Now,)d
∏ = Kd

& ! ) d
∏ = Kd

& ! * *
1

I r
d di dii== ∑K XΣ

(9.8)

where

and to get to the last line we assume as in the previous section that the estimator of

the variance components is translation invariant.

The second term in (9.8) is

To see why the above term is approximately the  matrix, see the argument just after0
(8.10) and note that we do not have an  type component here.Md

The first term in (9.8) is

where

and  and  are as defined in the previous sections and are therefore based on theX V
in-sample areas only.  Again we need to assume that  in  does not depend on the%−1 V
in-sample random effects  to do the following.u
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After some simplifications we have

where ,  and  are defined using the in-sample areas.Z u e

Hence we have

(9.9)

and we can approximate (9.9) with

where

and  is just  with the estimates ,  and  substituted in as in previous sections.V V " ! u

Now we need to consider the terms

and

Note that  is a function of the in-sample data and is independent of (d − (d (d − (d

which is a function of the out-of-sample data.  Therefore

and
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Now using (9.6) and (9.7) we have

since  is unbiased in a linear mixed model framework.!

Also using (9.4)

Hence

and

We can now define an MSE estimator for the out-of-sample areas, 
 asd =D+ 1,D+ 2,¢,D+R
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10.  APPROXIMATE STANDARD ERRORS OF THE ELEMENTS OF !

In Section 8 we derived the approximate MSE matrix of an estimator of the form 

, where  and  are given matrices.K! +Mu M K

If we set  to be the identity matrix and  to be a matrix containing all 0’s then we canK M
apply (8.20) directly to obtain

(10.1)

by noting that the component  is not relevant here.  The approximation (10.1)G4(")
can be used to check the significance of the covariates in the model.  Note that it is

not appropriate to use  defined in Section 4 for this purpose (since it is not a−J!
−1

function of  and does not account properly for the influence of the random effects).W

Note also that in this framework (of linear mixed models),  is unbiased, and so the!

approximate standard errors of the elements of  are the square root of the diagonal!

entries in (10.1).
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11.  PARAMETRIC BOOTSTRAP MEAN SQUARED ERRORS

The mean squared error estimators in Sections 8 and 9 were derived using various
approximations.  In this section we consider an alternative mean squared error
estimation technique based on a parametric bootstrap.  This approach is very similar
to the bootstrap method described in Molina et al. (2007).  The main difference here
is that instead of simulating  from a univariate normal distribution, we need toud

simulate from a bivariate normal distribution.  We also extend this bootstrap
technique to incorporate out-of-sample small areas.

The bootstrap method is outlined as follows:

(a) Model fitting: fit the model to the original data (this will be for in-sample areas 

), obtaining parameter estimates  and  and .d = 1,2,¢,D !1 !2 "

(b) Generation of random effects: For  (includes d = 1,2,¢,D,D+ 1,D+2,¢,D+R
 out-of-sample areas), independently generate  from a bivariateR ud

& = (ud1
& ,ud2

& )t

normal distribution with mean  and covariance matrix0

(c) Generation of a bootstrap population: for ,d = 1,2,¢,D,D+ 1,D+2,¢,D+R
calculate the probabilities

and

and generate the following sample and non-sample multinomial vectors

Calculate the true area totals
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(d) Model fitting to the bootstrap sample and parameter estimation: fit model to the

bootstrap sample data , for  only, obtaining estimates , , ydi
& d = 1,2,¢,D ! 1

& ! 2
& " &

and predicted values .  Note that the predicted values of  for theud
& ud

out-of-sample areas  are always .  From these,d =D+ 1,D+ 2,¢,D+R ud
& = 0

calculate individual predicted values for  :d = 1,2,¢,D+R

Then calculate bootstrap estimates of totals by

(e) Bootstrap replicates: repeat steps (b)–(d)  times.  Let  and  denote theB (d1
&(b) (d2

&(b)

true values of the parameters and  and  the estimators that are( d1
&(b) ( d2

&(b)

obtained in the -th repetition, .  The bootstrap estimators of theb b = 1,2,¢,B

mean squared error matrices , for  areE ((d − (d)((d − (d)t d = 1,2,¢,D+R

(f) Other estimates: after step (e) it is also possible to estimate mean squared errors

of other parameter estimates such as  and .  For example, after implementing! "
the repetitions  we can also approximate root relative mean squaredb = 1,2,¢,B

errors of each element in  and .  Let index  denote the -th element of !1 !2 k k !1

(or ).  Let  denote the value from step (a) and  denote the bootstrap!2 !1(k) ! 1(k)
&(b)

estimate at iteration .  A bootstrap estimate of the  isb RMSE(!1(k))

and this can be compared directly with the standard error estimate from
Section 10.

46 ABS • SMALL AREA ESTIMATION USING A MULTINOMIAL LOGIT MIXED MODEL • 1351.0.55.029

* * * *
1 1 1 2 2 2

* * * * * * * *
1 1 1 2 2 2 1 1 1 2 2 2

ˆ ˆˆ ˆ
*

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
ˆ = , .

1 1

t t
di d di d

t t t t
di d di d di d di d

t
u u

r r
di di u u u u

e e
m

e e e e

+ +

+ + + +

 
 
 + + + + 

x x

x x x x
y

β β

β β β β

( ) ( )
10

* * * * *
1 2

1

ˆ ˆ ˆ ˆ= , = .
t r

d d d di di
i

δ δ
=

+∑ y yδ

( )( )

( ) ( )( )

( )( ) ( )

2*( ) *( ) *( ) *( ) *( ) *( )1 1
1 1 1 1 2 2

1 1

2*( ) *( ) *( ) *( ) *( ) *( )1 1
1 1 2 2 2 2

1 1

ˆ ˆˆ =

ˆ ˆ ˆ

.
ˆ ˆ ˆ

t
d d d d

B B
b b b b b b

d d d d d d
b b

B B
b b b b b b

d d d d d d
b b

E

B B

B B

δ δ δ δ δ δ

δ δ δ δ δ δ

− −

= =

− −

= =

 − − 
 

 
− − − 

 
 
 − − − 
 

∑ ∑

∑ ∑

δ δ δ δ

( )2*( )1
1( )1( )

=1

ˆ ˆ
B

b
kk

b

B− −∑ β β



12.  AUXILIARY DATA

The previous sections described the theory behind producing small area estimates of

labour force counts and estimating mean squared errors.  We now apply this theory to

real data.

The small areas in our model represent LGAs (Local Government Areas) which have

boundaries defined according to the 2001 ASGC (Australian Standard Geographical

Classification).  These are chosen because they provide sufficiently fine geographical

areas, but still have adequate samples in the area for analysis.  The total number of

in-sample areas in August 2001 and August 2006 are respectively 424 and 413 and the

total number of out-of-sample small areas in August 2001 and August 2006 are

respectively 220 and 231.

The first step is to fit an appropriate model to the in-sample data and produce PQL

estimates of  and  and approximated REML or ML estimates of .  One essential partu ! "

of this first step is to choose an appropriate set of explanatory variables to include in

the models.  That is, we need to fully define  and .xdi1 xdi2

Auxiliary data are available from a variety of different sources.  The two main sources

are administrative Centrelink benefit payment data from DEEWR (Department of

Education, Employment and Workplace Relations) and the Australian Census of

Population and Housing.  These data are available for the time points August 2001 and

August 2006 and so it will be possible to fit two separate models with the same

explanatory variables for the two different time points as a comparison.

There are quite a large number of potential explanatory variables that could be used in

the models.  Ideally some kind of model variables selection process would need to be

undertaken, however we do not consider this approach here.  Instead we note that

the ABS has already produced experimental estimates of small area labour force

counts using three separate binomial logit mixed effects models (using the

methodology outlined in Saei and Chambers, 2003).  A careful model selection

process was applied in this case to determine an appropriate set of explanatory

variables for the binomial logit mixed models.  For consistency and comparative

purposes we will use the same set of explanatory variables that were used in these

earlier models.  Therefore each of our vectors  and  will contain the same setxdi1 xdi2

of 37 variables each.  In summary, these variables are benefits payments variables,

state indicators, age/sex indicators, remoteness indicators, socio-economic indexes for

areas, and household type.
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The following list outlines the explanatory variables in more detail.

! AS1–AS10: ten age/sex indicators.  The five age groupings are 15–24 years, 25–34
years, 35–44 years, 45–54 years and 55–64 years.  Note that we only consider the
working age population for this analysis.  AS1–AS10 are defined in order of
increasing age and all odd AS groups are males.  The base category is AS1.

! STATE1–STATE8: eight state indicators.  These refer in order to New South
Wales, Victoria, Queensland, South Australia, Western Australia, Tasmania, the
Northern Territory and the Australian Capital Territory.  The base category is
New South Wales.

! NSA_YAO: Proportion of population in the class registered to receive full
payment of Newstart Allowance (unemployment benefits) or Youth Allowance
(other).

! ASPAY1–ASPAY10: ten age/sex indicator by PAY interactions.  PAY is the
proportion of the population in the class registered to receive full other benefit
payments.  For example, disability support pension, parenting payments, partner
allowance, wife pension, etc..  Note that this set up implies that the effect that
PAY has on the probability is different for each age/sex class.

! REMOTE1–REMOTE3: three remoteness indicators.  These refer to major city
(REMOTE1), non-remote area (REMOTE2) and remote area (REMOTE3) as per
the ASGC (Australian Standard Geographical Classification) 2001 (see ABS (2001)
for further details).  The base category is REMOTE1.

! SEIFA1–SEIFA4: four socio-economic index of advantage-disadvantage
indicators.  SEIFA1 indicates advantaged areas (whether the area is in the top
25% of SEIFA scores), SEIFA2 indicates the next 25%, SEIFA3 the next 25% and
SEIFA4 indicates the most disadvantaged areas (whether the area is in the
bottom 25% of SEIFA scores).  The base category is SEIFA1.  For further details
see ABS (2003).

! HH1: Proportion of Census population in class that lives in dwelling consisting of
married couple only or married couple with at least one child aged 15 or over.

! HH2: Proportion of Census population in class that lives in dwelling consisting of
married couple with children all aged 0 to 14 years.

! HH3: Proportion of Census population in class that lives in dwelling consisting of
one person only or one person with at least one child aged 15 or over.

! HH4: Proportion of Census population in class that lives in dwelling consisting of
one person with children all aged 0 to 14 years.
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Before we fit the multinomial logit mixed models, we undertake a brief exploratory
data analysis using the August 2006 LFS and Census data to examine the suitability of
our above chosen explanatory variables.  Figure 12.1 contains average proportions of
employed and unemployed within the ten AS groups, the eight STATE groups, the
three REMOTE groups and the four SEIFA groups.  The labour force proportions
(especially employment) depend strongly on age and sex since the mean proportions
vary across these categories.  The AS indicators should certainly be considered as
explanatory variables.  Figure 12.1 also shows that the relationships between the
labour force average proportions and each of STATE, SEIFA and REMOTE are in
general not as strong as age/sex but there is still some variation.

12.1  Plot of average labour force proportions within certain groups for 2006
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The variables we have examined so far are the categorical variables.  We now examine
relationships between  for the cases  and  and thelog(ydi1/ydi3) ydi3 > 0 ydi1 > 0
continuous explanatory variables for 2006.  Note that we do not do this for  sinceydi2

there are a large number of zeros in this case.

Figure 12.2 contains plots of  versus each of HH1, HH2, HH3 and HH4.log(ydi1/ydi3)
From these it appears there might be a weak association, especially for HH1 and HH3.
A similar plot for the variable NSA_YAO is given in figure 12.3, although we note that
the linear relationship in this case does not look very strong.  However, note that
irrespective of this observation, a relationship may still exist between  log(ydi2/ydi3)
and NSA_YAO and this is the reason why this variable is still included.
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12.2  Plot of log(ydi1/ydi3) versus each of HH1, HH2, HH3 and HH4 for 2006
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12.3  Plot of log(ydi1/ydi3) versus NSA_YAO for 2006
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12.4  Plot of log(ydi1/ydi3) versus PAY within AS groups for 2006
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Figure 12.4 contains a plot of  versus PAY within AS groups.  Therelog(ydi1/ydi3)

appears to be a negative relationship between  and PAY.  However, notelog(ydi1/ydi3)

that the slopes appear to differ between AS groups.  This is the reason why we include
the PAY variable in the model as an interaction between each of the AS indicators.
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13.  ESTIMATES OF MODEL PARAMETERS

Tables 13.1 and 13.2 contain the PQL estimates of  and  for the years 2006 and!1 !2

2001.  Estimates of the standard errors of the parameter estimates and p-values are
also given in these tables.  The p-values are calculated assuming that the distribution
of the parameter estimate is approximately normal.  Estimates which are significant at
the 0.05 level are marked with a *.  Not all parameter estimates appear to be
significant, but as we stated in the previous section, all variables are still included for
consistency with the previously fitted binomial logit mixed models.  As expected, for
employment (and this holds for both years), the AS group indicators and ASPAY
variables are highly significant.  For both years, the variable NSA_YAO is highly
significant for unemployment.  This is what we would expect as NSA_YAO is related to
unemployment.

The standard errors in tables 13.1 and 13.2 use the analytical approximation (10.1)
which has many assumptions behind it.  As a comparison, we also calculate parametric
bootstrap RMSEs using the algorithm described in Section 11 (in particular see step
(f)).  We implement the parametric bootstrap using the 2006 data, with the simulation
size set to  and use the combined PQL-REML algorithm for parameterB = 1000
estimation.  A comparison between the 74 estimated analytical standard errors and the
parametric bootstrap estimated root mean squared errors is given in figure 13.3
(figure 13.4 contains the smaller standard errors in the range 0–0.5 only).  From these
plots we can see that the differences between the estimated SEs and RMSEs are very
small.  Also in all cases we find that the bias component of the bootstrap RMSEs is

small (<1.5%).  Therefore the analytical SE estimates of  appear to be good!

approximations.

The PQL parameter estimates in tables 13.1 and 13.2 use the approximated REML
method to estimate the variance components .  As an alternative to this we could"
also have used the approximated ML method.  Table 13.5 contains estimates of the
variance components for both August 2001 and August 2006, using the two different
estimation methods.  To estimate the RRMSEs of the approximated ML and REML
estimators, the parametric bootstrap of Section 11 (with ) can be used withB = 1000
some slight modifications that we now briefly discuss:

! In step (a) of the algorithm, compute the PQL-REML estimates.  These will be
conditioned on in the rest of the simulation

! In step (d) we need to compute both the REML and ML estimates of the variance
components.

! At the conclusion of the simulation we have 1000 REML and 1000 ML estimates
of   These can then be used to calculate estimates of bias and RMSEs.".
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13.1  PQL Estimates of  and  for 2006 (REML used for variance components)!1 !2

0.06881.821.9903.6300.23801.180.9241.090HH4
0.26301.120.7250.814*< 0.00014.180.3621.510HH3
0.3250–0.980.591–0.5820.4030–0.840.292–0.244HH2
0.26701.110.4000.444*0.00362.910.2190.637HH1

*< 0.00014.232.1008.9000.9800–0.031.160–0.030NSA_YAO

0.98800.022.2000.034*< 0.0001–8.340.566–4.720ASPAY10
*0.0340–2.121.760–3.730*< 0.0001–10.000.638–6.390ASPAY9

0.88400.152.2200.325*< 0.0001–6.410.844–5.410ASPAY8
0.4220–0.802.690–2.160*< 0.0001–7.941.330–10.500ASPAY7
0.1360–1.491.770–2.640*< 0.0001–6.520.735–4.790ASPAY6

*< 0.0001–4.703.700–17.400*< 0.0001–9.391.740–16.300ASPAY5
0.68900.401.6300.652*< 0.0001–6.100.739–4.510ASPAY4

*0.0058–2.764.680–12.900*< 0.0001–6.302.720–17.100ASPAY3
0.2110–1.251.570–1.970*< 0.0001–4.810.843–4.060ASPAY2

*0.0375–2.082.260–4.700*< 0.0001–4.501.210–5.430ASPAY1

0.45000.760.1400.1060.2340–1.190.082–0.098SEIFA4
0.64300.460.1220.057*0.0324–2.140.073–0.157SEIFA3
0.6630–0.440.094–0.041*0.0131–2.480.059–0.145SEIFA2

0.47900.710.0890.063*< 0.00013.920.0550.215REMOTE3
0.80900.240.1150.0280.19401.300.0780.101REMOTE2

*< 0.0001–5.730.443–2.540*< 0.0001–4.910.132–0.647AS10
*0.0045–2.840.328–0.930*0.00742.680.1340.360AS9
*0.0001–3.880.314–1.220*0.00023.690.1290.476AS8

0.8720–0.160.297–0.048*< 0.000111.100.1451.600AS7
0.3210–0.990.377–0.374*0.00023.750.1700.637AS6

*0.00153.180.3821.210*< 0.000112.600.1842.320AS5
*0.0085–2.630.311–0.819*< 0.00014.550.1380.627AS4
*0.00093.330.2970.986*< 0.000113.200.1612.130AS3

0.5660–0.570.269–0.1540.49500.680.1380.094AS2

0.43500.780.1990.155*0.00073.390.1310.444STATE8
*0.0081–2.650.276–0.7300.3870–0.870.158–0.137STATE7

0.9260–0.090.144–0.0130.98700.020.0910.002STATE6
0.1560–1.420.114–0.1620.14201.470.0650.096STATE5
0.4090–0.830.115–0.0950.16501.390.0690.096STATE4
0.57400.560.1010.057*0.00502.810.0620.175STATE3
0.8690–0.170.096–0.0160.12101.550.0590.092STATE2

*< 0.0001–5.270.358–1.890*0.02572.230.1920.428Intercept

p-valueZSEEstimatep-valueZSEEstimateVariable

UnemployedEmployed
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13.2  PQL Estimates of  and  for 2001 (REML used for variance components)!1 !2

0.17401.362.6603.6100.83600.211.3100.271HH4
*0.00602.750.9382.580*0.00063.450.4571.580HH3

0.1030–1.630.557–0.911*0.0069–2.700.303–0.819HH2
0.06011.880.3940.7410.45100.750.2170.164HH1

*< 0.00015.161.4507.5100.4370–0.780.897–0.697NSA_YAO

0.72300.362.3700.843*< 0.0001–9.820.614–6.020ASPAY10
0.2540–1.141.260–1.430*< 0.0001–8.810.507–4.460ASPAY9
0.3120–1.011.760–1.780*< 0.0001–8.410.665–5.590ASPAY8

*0.0006–3.452.380–8.210*< 0.0001–8.621.300–11.200ASPAY7
0.7200–0.361.680–0.604*< 0.0001–5.900.746–4.400ASPAY6

*0.0010–3.292.850–9.390*< 0.0001–7.781.770–13.800ASPAY5
0.5410–0.611.680–1.030*< 0.0001–5.780.819–4.730ASPAY4
0.0601–1.883.780–7.110*0.0004–3.512.630–9.230ASPAY3
0.62300.491.3400.658*0.0015–3.180.746–2.370ASPAY2
0.90300.121.6500.201*0.0002–3.791.010–3.830ASPAY1

0.2500–1.150.122–0.1410.2150–1.240.068–0.084SEIFA4
0.4400–0.770.108–0.0830.2460–1.160.060–0.069SEIFA3
0.63500.480.0830.0390.2500–1.150.046–0.053SEIFA2

0.30801.020.0750.077*0.00113.270.0420.138REMOTE3
0.86900.170.1010.0170.53300.620.0580.036REMOTE2

*< 0.0001–5.300.506–2.680*< 0.0001–5.090.151–0.766AS10
*0.0117–2.520.315–0.7950.57700.560.1430.080AS9
*0.0096–2.590.296–0.767*0.00213.080.1350.415AS8
*0.00033.640.2650.966*< 0.000111.400.1511.720AS7

0.7110–0.370.358–0.133*< 0.00013.980.1800.715AS6
*< 0.00015.240.3441.800*< 0.000112.300.2002.460AS5

0.47700.710.2820.200*< 0.00015.310.1470.781AS4
*< 0.00015.770.2871.650*< 0.000110.800.1821.960AS3

0.5800–0.550.267–0.1480.5540–0.590.151–0.089AS2

0.56700.570.1770.1010.13101.510.0960.145STATE8
0.53700.620.2190.1350.54500.610.1240.075STATE7
0.07671.770.1240.2200.8020–0.250.071–0.018STATE6
0.12601.530.0950.1460.45200.750.0520.039STATE5
0.25001.150.1040.1190.41700.810.0560.045STATE4

*0.00013.830.0860.330*0.00612.740.0480.131STATE3
0.14701.450.0840.1220.59800.530.0450.024STATE2

*< 0.0001–7.050.370–2.610*0.00013.820.2040.779Intercept

p-valueZSEEstimatep-valueZSEEstimateVariable

UnemployedEmployed
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13.3  Plot of analytical SEs versus bootstrap RMSEs of  for 2006!
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13.4  Plot of the small analytical SEs versus bootstrap RMSEs of  for 2006!
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13.5  Estimates of "

0.5800.6170.3070.316+
0.04660.04240.01250.0105"12

0.08530.06910.05950.0468"2

0.07580.06830.02800.0238"1

REMLMLREMLMLParameter

20062001

Table 13.6 contains the bootstrap results for  for August 2006.  In terms of bias, the"
REML estimator is performing reasonably well since all relative bias estimates are <2%
in absolute value.  From these results it is clear that the REML estimator is to be
preferred over the ML estimator since not only are the estimated biases smaller (as
one might expect), but the RRMSE estimates are also smaller for the REML estimator.

13.6  Comparison of the REML and ML estimators of  for 2006"

20.1522.680.806.710.580+
27.0831.87–1.85–19.540.0853"2

13.2215.56–1.56–9.150.0758"1

REMLMLREMLMLParameter

RRMSE (%)Relative bias (%)

Original

estimate

It is also of interest to test the significance of the variance components  (since if"
these are not significantly different from zero, then there is no point using a mixed
effects model).  In Molina et al. (2007), the authors test the significance of their single
variance component using a likelihood ratio test (which is based on the approximate
marginal likelihood).  In theory we could apply a similar test here, but unfortunately
the distribution of the likelihood ratio test statistic in our case will not be easy to
derive under the null hypothesis.  This is because under the null hypothesis 

 and  is on the boundary of the parameter space which is a non" = ("1,"2,"12)t = 0 "
standard condition.  Molina et al. (2007) were able to apply this test because in the
case of one variance component, the null distribution is known to be a mixture of two 

 distributions.,2
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13.7  Histograms of ,  and  for 2006 and 2001"1 "2 +
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In any case, as an alternative, the previous parametric bootstrap used to produce table
13.6 will give some insight into the significance of the variance components.  Using
the 1000 REML estimates of each parameter, we build up empirical distributions under
the fitted model of the REML estimators.  Histograms of the 1000 sets of REML
variance component estimates are given in figure 13.7.  From these we can calculate
approximate 95% parametric bootstrap confidence intervals using the percentile
method.  These confidence intervals are given in table 13.8.  Notice that the
confidence intervals for  and  for both years are not close to zero and the"1 "2

distributions look roughly symmetric, giving some evidence that the variance
components are significant and a random effects model is appropriate in both years.

13.8  Approximate 95% confidence intervals for ,  and  for 2006 and 2001"1 "2 +

0.581–0.0480.7880.371+

0.09370.02720.12800.0439"2

0.03950.01690.09480.0556"1

UpperLowerUpperLowerParameter

20012006
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If we were to apply the model in Molina et al. (2007) to our LFS data, we would be
imposing that .  Tables 13.5 and 13.8 give some evidence that this more" = ("1,"1,"1)t

restrictive model may not be appropriate especially for the 2001 data.  To test the null
hypothesis of  for the 2006 data, a parametric bootstrap is used to" = ("1,"1,"1)t

generate empirical distributions under the null.  The algorithm in Section 11 is used
for this purpose, but note that we need to make one small change.  Since we need to
simulate under the null, in step (c) we replace all instances of  with  to ensureud2

& ud1
&

there is only one variance component.  A histogram of the empirical distribution of +
under the null hypothesis is given in figure 13.9 for the 2006 data.  There is strong
evidence to suggest that  does not hold since the observed  is 0.580 and is+ = 1 +
nowhere near any of the simulated  values under the null.  Therefore our category+
specific random effects model appears to be more appropriate for our data than the
more restrictive model used in Molina et al. (2007).

13.9  Histogram of  under the null for 2006+
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14.  RESIDUAL PLOTS AND GOODNESS OF FIT TESTS

In the case of the multinomial logit model with no random effects or variance
components, it is usual to assess model fit by computing various different summary
statistics, measuring differences between the observed and fitted values.  For example,
as stated in Dobson (2001), one could use the Pearson  statistic, Deviance or the,2

Likelihood ratio chi-squared statistic.

Suppose we have no random effects or variance components  (the model is a GLM"
(generalised linear model)), then the standard Pearson  goodness of fit statistic is,2

where  is the estimated expected value of .  The Pearson  goodness of fit testEdij ydij ,2

is used to determine whether or not the model appears to hold.  Given that the model
holds and under appropriate asymptotic conditions (expected counts  are large),Edij

the Pearson  statistic will follow an approximate  distribution, where ,2 ,2(N−p)
2

 is the total number of multinomial observations for the AugustN = %d=1
D Id = 7, 820

2006 data (similarly we could also compute this for August 2001) and  is thep = 37
number of parameters in  (or ).  A large or small value of  indicates that overall!1 !2 ,p2

the model does not appear to hold (the null hypothesis is that the model holds).

Unfortunately we cannot apply the above test to our data since our model is not a
GLM.  The application of goodness of fit tests in a GLMM (generalised linear mixed
model) situation is not straight forward theoretically.  For instance, the observations
are no longer independent and the Pearson statistic and other statistics are not
guaranteed to have a  distribution under the null hypothesis even when the,2

expected counts are large.  Also, another problem is that the estimates  are notEdij

easy to calculate as they involve integrals with no closed form solution.

There are two approaches that we consider to get around the above issues.  The first
is to use as , the conditional expectation estimates  predicted from theEdij mdi pdij
model and the second is to use an estimate of  from a Taylor series expansionE(ydij)
about , since in our case the variance components are small.  The distribution ofud = 0
these  statistics can then be estimated by applying the parametric bootstrap of,2

Section 11 using B = 1000.

For our multinomial logit mixed model sample data we have

(14.1)
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and

(14.2)

It can be shown using Taylor series expansions that when the variance components
are small,

(14.3)

(14.4)

and (14.5)

where ,  and  are respectively ,  and  with  replaced with thepdi1
& pdi2

& pdi3
& pdi1 pdi2 pdi3 ud

zero vector (the Taylor series expansions were taken about the point ).  Also,ud = 0
we can show that

(14.6)

(14.7)

and (14.8)
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We are now at a point where we can approximate  in the  statistic usingEdij ,2

estimates of  based on the Taylor series approximations (14.3)–(14.5) andE(ydij)
noting the relationship (14.1).  Note that within these approximations, the parameters

 and  are replaced by their estimates.  Call this the unconditional approximation! "
method.  The other method as we mentioned earlier is to use the estimates of the

conditional expectation  for  in the  statistic.  Call this method theE ydij|ud Edij ,2

conditional method.

14.1  Histogram of the  statistic using the conditional method for 2006,2
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Using the parametric bootstrap of Section 11, we generate empirical distributions of
the two  statistics under the fitted model based on a simulation of size   ,2 B = 1000.
The two distributions are summarised in figures 14.1 and 14.2 for the August 2006
data.  An approximate 95% confidence interval for the conditional method is (7035,
7708) and an approximate 95% confidence interval for the unconditional
approximation method is (8045, 8775).  The values of the  statistic for the sample,2

data are 7669 (conditional method) and 8703 (unconditional approximation method).
Clearly these values are within the appropriate approximate confidence intervals,
suggesting that overall both the models for  and  are adequate for theydij ydij|ud

August 2006 sample data (similar conclusions can also be drawn for the August 2001
data, but details are not given here).
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14.2  Histogram of the  statistic using the unconditional approximation method for 2006,2
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One issue associated with goodness of fit tests is that they only produce one overall
summary measure.  It is of interest to also examine individual deviations and look for
outliers/influential points.  Residual plots are useful for this purpose.  For each labour
force status , define the following conditional standardised residuals for thej = 1,2,3
in-sample data (Molina et al. (2007) call these Pearson residuals)

We can also calculate approximate unconditional standardised residuals as follows

where  and  are estimates based on the earlier Taylor series( )ˆ
dijE y " ( )dijVar y

approximations (14.3)–(14.8) and the relationships (14.1) and (14.2) with parameters 

 and  replaced with estimates.! "
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Interestingly, we can also calculate the following summary statistics for each labour
force category j = 1,2,3

and

and compare these with appropriate empirical distributions generated from a
parametric bootstrap under the fitted model with  (again we use theB = 1000
bootstrap approach in Section 11).  The empirical distributions are given in figure
14.3.  Table 14.4 contains the  and  values for the August 2006 sample data as wellSc Suc

as approximate 95% parametric bootstrap confidence intervals using the percentile
method.  None of the  or  values are within their corresponding confidenceSc Suc

intervals.  These statistics indicate that there may be underdispersion present for the
Unemployed counts and overdispersion for both the Employed and NILF counts.
Previously when we calculated the overall  statistics we did not obtain significant,2

values.  This is because the over and underdispersion in a way averaged themselves
out overall.

14.3  Histogram of the  and  statistics for 2006 from a parametric bootstrapSc Suc
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14.4   and  values and associated parametric bootstrap 95% confidence intervalsSc Suc

4,0433,7364,4073,8423,5034,253Not in labour force

4,1373,5783,5654,0003,4073,393Unemployed

4,0303,7414,3063,8483,5224,224Employed

UpperLowerSuc
UpperLowerSc

LFS status

UnconditionalConditional

We now examine some residual plots to look more closely at this potential under and
overdispersion issue.  Figure 14.5 contains the standardised residuals  versus therdi1

c

order of increasing predicted values  for the 2006 employed sample data.  Themdi pdi1
panel labelled original contains the original sample and the other three panels contain
values calculated from three parametric bootstrap samples.  Similarly, figure 14.6
contains the unconditional standardised residuals  versus the order of increasingrdi1

uc

predicted values .  Similar plots for NILF and unemployed are given in figuresE(ydi1)
14.7–14.10.

When comparing the bootstrap generated employed and NILF samples with the
original data, it appears that the original data contain a small number of larger
absolute residual values for both Employed and NILF.  We actually recalculated the Sc

and  statistics by setting these few larger absolute residuals to zero for employedSuc

and NILF, but the resulting  and  statistics were still significantly large.  HenceSc Suc

these couple of larger absolute residuals are not solely responsible for the apparent
overdispersion.  In any case, when ignoring the small number of larger absolute
residuals, the sample and original data distributions look roughly similar and hence we
argue that the apparent under and overdispersion is not large enough for us to be
overly concerned.  In the significance tests we are clearly only picking up small
significant differences and we suspect this is because our sample sizes are large.

We mentioned above that there were a small number of larger residuals in absolute
value than one might expect when compared to the bootstrap samples.  Most of these
do not appear to be overly large and the NILF and employed ones mostly correspond
to the same units.  Upon further investigation, the only thing these outliering units
have in common is that they are mostly all from remote areas (REMOTE3=1).
Therefore the model may not be doing as well in the remote areas.  Note that there is
not much we can do about this issue because the sample sizes are small in the remote
areas and we do not have any further covariates available.
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14.5  Plots of the conditional employed standardised residuals versus order of predicted values
for original 2006 data and for three parametric bootstrap simulations
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14.6  Plots of the unconditional employed standardised residuals versus predicted
values for original 2006 data and for three parametric bootstrap simulations
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14.7  Plots of the conditional NILF standardised residuals versus order of predicted
values for original 2006 data and for three parametric bootstrap simulations
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14.8  Plots of the unconditional NILF standardised residuals versus predicted values
for original 2006 data and for three parametric bootstrap simulations
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14.9  Plots of the conditional unemployed standardised residuals versus order of predicted values
for original 2006 data and for three parametric bootstrap simulations
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14.10  Plots of the unconditional unemployed standardised residuals versus predicted
values for original 2006 data and for three parametric bootstrap simulations
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14.11  Q–Q plots of  for the original 2006 sample and three bootstrap samplesud1

theoretical standard normal quantiles
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14.12  Q–Q plots of  for the original 2006 sample and three bootstrap samplesud2
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So far we have said nothing about the predicted random effects .  Figure 14.11u
contains a plot of the quantiles of standardised  values versus theoretical standardud1

normal quantiles.  This is done for the original 2006 sample and three samples
generated using the parametric bootstrap.  Similarly, figure 14.12 contains a plot of the
quantiles of standardised  values versus theoretical standard normal quantiles.ud2

Figure 14.13 contains a plot of  versus .  From these figures it appears that theud1 ud2

original 2006 sample  values behave similar to those obtained from ‘typical’ud

samples.  The estimated  values from the original sample therefore do not appearud

to give any indication of model departure.

14.13  Plots of  versus  for the original 2006 sample and three bootstrap samplesud1 ud2
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15.  SMALL AREA ESTIMATES AND MSE ESTIMATES

Similar to figure 8 in Molina et al. (2007), figure 15.1 contains plots of the ratios of
direct RSE estimates to model analytical RRMSE estimates versus sample sizes for
2006.  The line  is also plotted.  A ratio greater than 1 indicates we get gains byy = 1
using the model based approach, whereas a ratio less than 1 indicates we get gains by
using the direct survey estimation approach.  Since all ratios are greater than 1 we are
always getting gains by using the model based approach.  The gains are quite large
when the sample sizes are small and are small when the sample sizes are larger.
Therefore when the sample size is small, the model based estimates have much small
estimated MSEs than the direct survey estimates.  Hence we have successfully reduced
the MSEs by using a model based approach.

15.1  Plots of the ratios of direct RSE estimates to model
analytical RRMSE estimates versus sample sizes for 2006
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Figure 15.2 contains a comparison between the model based estimates (8.2) and the
direct survey estimates for the August 2006 in-sample small areas.  Note that the
estimates of the NILF small area totals are obtained via subtraction.  These plots are
useful as a check for bias.  For confidentiality reasons we have removed the actual
numbers on the plots.  The three plots on the left contain all of the estimates, whereas
the plots on the right contain only the estimates closer to zero.  The line  is alsoy = x
drawn on these plots.  Note that the direct survey estimates should be approximately
design unbiased but with large standard errors.  Figure 15.2 suggests that the model
based estimates for Employed and NILF are roughly unbiased since although there is
some variation, the estimates are distributed roughly about the line .  They = x
unemployment model based estimates appear to be a little worse in some cases.  For
instance, when the direct estimates are large, the model based estimate tends to be
smaller.  However, for the most part, the model based estimators appear roughly
unbiased or have a small bias.

15.2  Comparison between model based small area estimates
and direct survey estimates for 2006
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We now consider mean squared error estimation for the estimated small area totals.
The mean squared error matrices can be estimated using two methods, either by an
analytical approximation or a parametric bootstrap.  For further details on the
analytical approximation and the parametric bootstrap see Sections 8, 9 and 11.  A
comparison of the average percentage RRMSEs for 2006 derived from the analytical
approximation and the parametric bootstrap with  is given in table 15.3.  OnB = 1000
average the differences between the two methods are very small.  The largest average
absolute difference is for unemployment and this is only 0.83% and 0.62% for
respectively the in-sample and out-of-sample small areas.

15.3  2006 Average RRMSE (%) estimates

19.7219.6613.2613.34Not in labour force

31.6832.3023.6924.52Unemployed

7.477.444.864.84Employed

AnalyticalBootstrapAnalyticalBootstrapLFS status

Out-of-sample areasIn-sample areas

Figure 15.4 contains an overall comparison between the analytical and parametric
bootstrap RRMSEs for August 2006.  The line  is also plotted.  Figure 15.4 alsoy = x
confirms that on average the RRMSEs from both methods compare well since the
values are roughly distributed about the line .  The in-sample unemploymenty = x
analytical RRMSE estimates appear a little worse than the others on average since the
analytical approximation looks to be on average slightly overestimating the smaller
RRMSEs and underestimating the larger RRMSEs.

Table 15.5 contains the 2.5th and 97.5th percentiles of the distribution of the
differences between the 2006 parametric bootstrap and the analytical RRMSE
percentages.  Figure 15.4 and table 15.5 shows that there is some variability in the
differences between the parametric bootstrap and analytical RRMSEs.  However, this
variability is not overly large with the worse case being for the in-sample unemployed
and the majority of these differences are  in absolute value.  Note also that some< 4%
of these larger differences could also be due to extra variation resulting from the
parametric bootstrap since  is only a moderately large value.B = 1000
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15.4  Comparison between analytical and bootstrap RRMSEs
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16.  CONCLUSION

This paper successfully adapted the model and estimators described in Molina et al.
(2007) to include category specific random effects.  We showed that the category
specific multinomial logit mixed model is more appropriate for our dataset than the
more restrictive one given by Molina et al. (2007).  The PQL-REML estimation
procedure worked very well in our context and we showed via a parametric bootstrap
that the PQL-REML estimators had good statistical properties.  For instance, the bias in
the REML variance component estimates was found to be small.

Similar to Molina et al. (2007), we described and derived two different estimators of
the mean squared errors of the small area estimated totals.  These two different
approaches are based on using an analytical approximation and a parametric
bootstrap.  In the paper by Molina et al. (2007), the authors undertook a simulation
study and concluded that the bootstrap estimator performed better than the analytical
approximation and recommended the bootstrap be used.  However they noted that
the differences were smaller for the actual UK unemployment data.  We showed that
for the Australian labour force data that the analytical approximation RRMSEs
compared very well with the parametric bootstrap RRMSEs and the differences were
all reasonably small.  In our context we recommend that the analytical RRMSEs be
used because our parametric bootstrap is much more computationally intensive than
the one given in Molina et al. (2007).  We believe the small gains in accuracy will not
be worth the extra computational effort involved for the parametric bootstrap in our
case.

In this paper we used residual plots and  goodness of fit tests to check model,2

assumptions.  We used a parametric bootstrap to generate the empirical distributions
of the  statistic.  These tests and plots indicated that the model assumptions,2

appeared to hold approximately for the sample data.  There was very slight under and
overdispersion present and a couple of small outliers for remote areas.  In a future
study we might try to improve the model for remote areas.  In any case, for the most
part the multinomial logit mixed model appears to work reasonably well for modelling
the Australian Labour Force count data.  Interestingly, the multinomial model has
quite a restrictive variance and correlation structure and the fact that the multinomial
model works so well here is very convenient.  This is because extending the model to
account for under and overdispersion in a small area context would not be straight
forward.  This would certainly be an interesting topic for future research.

Another future research topic could be to try account better for the sample design and
any design informativeness.  Our estimators like those in the Molina et al. (2007)
paper essentially assume that the Labour Force sample has been collected using
SRSWOR.
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APPENDIX

This appendix contains the proof of (see Section 8).( )( ) ( ) ( )1 1 3ˆE ≈ −G G Gϕ ϕ ϕ

First we take a second order Taylor series expansion (and assume that  in  does not% T
depend on )"

Assuming that  is approximately constant and does not depend on  (technically T u T
depends on ) and , thenu E(") l "

(A.1)

After some algebra and making use of (8.16), (8.18) and (8.19) it can be proved that
for  and ,a = 1,2,12 b = 1,2,12

(A.2)
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Now, assuming that  (i.e.   is approximately constant), thenMd lMd Md

(A.3)

Now substitute (A.1) into (A.3) and using (8.12) and (A.2) we obtain

where for , ,  and ,a = 1,2,12 b = 1,2,12 j = 1,2 k = 1,2

and therefore
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